Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An efficient method to identify differentially expressed genes in microarray experiments.

Identifieur interne : 003995 ( Main/Exploration ); précédent : 003994; suivant : 003996

An efficient method to identify differentially expressed genes in microarray experiments.

Auteurs : Huaizhen Qin [États-Unis] ; Tao Feng ; Scott A. Harding ; Chung-Jui Tsai ; Shuanglin Zhang

Source :

RBID : pubmed:18453554

Descripteurs français

English descriptors

Abstract

MOTIVATION

Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss.

RESULTS

We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes.

AVAILABILITY

The C++ code to implement the proposed method is available upon request for academic use.


DOI: 10.1093/bioinformatics/btn215
PubMed: 18453554
PubMed Central: PMC3607310


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An efficient method to identify differentially expressed genes in microarray experiments.</title>
<author>
<name sortKey="Qin, Huaizhen" sort="Qin, Huaizhen" uniqKey="Qin H" first="Huaizhen" last="Qin">Huaizhen Qin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mathematical Sciences, Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematical Sciences, Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Tao" sort="Feng, Tao" uniqKey="Feng T" first="Tao" last="Feng">Tao Feng</name>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
<author>
<name sortKey="Zhang, Shuanglin" sort="Zhang, Shuanglin" uniqKey="Zhang S" first="Shuanglin" last="Zhang">Shuanglin Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18453554</idno>
<idno type="pmid">18453554</idno>
<idno type="doi">10.1093/bioinformatics/btn215</idno>
<idno type="pmc">PMC3607310</idno>
<idno type="wicri:Area/Main/Corpus">003899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003899</idno>
<idno type="wicri:Area/Main/Curation">003899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003899</idno>
<idno type="wicri:Area/Main/Exploration">003899</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An efficient method to identify differentially expressed genes in microarray experiments.</title>
<author>
<name sortKey="Qin, Huaizhen" sort="Qin, Huaizhen" uniqKey="Qin H" first="Huaizhen" last="Qin">Huaizhen Qin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mathematical Sciences, Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematical Sciences, Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Tao" sort="Feng, Tao" uniqKey="Feng T" first="Tao" last="Feng">Tao Feng</name>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
<author>
<name sortKey="Zhang, Shuanglin" sort="Zhang, Shuanglin" uniqKey="Zhang S" first="Shuanglin" last="Zhang">Shuanglin Zhang</name>
</author>
</analytic>
<series>
<title level="j">Bioinformatics (Oxford, England)</title>
<idno type="eISSN">1367-4811</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Neoplastic (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Neoplasms (metabolism)</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Pattern Recognition, Automated (MeSH)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Programming Languages (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Software (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Analyse en composantes principales (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Gènes de plante (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Langages de programmation (MeSH)</term>
<term>Logiciel (MeSH)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Reconnaissance automatique des formes (MeSH)</term>
<term>Régulation de l'expression des gènes tumoraux (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (méthodes)</term>
<term>Tumeurs (métabolisme)</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Neoplastic</term>
<term>Genes, Plant</term>
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Pattern Recognition, Automated</term>
<term>Principal Component Analysis</term>
<term>Programming Languages</term>
<term>Sequence Alignment</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Alignement de séquences</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Analyse en composantes principales</term>
<term>Gènes de plante</term>
<term>Humains</term>
<term>Langages de programmation</term>
<term>Logiciel</term>
<term>Modèles théoriques</term>
<term>Reconnaissance automatique des formes</term>
<term>Régulation de l'expression des gènes tumoraux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MOTIVATION</b>
</p>
<p>Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>AVAILABILITY</b>
</p>
<p>The C++ code to implement the proposed method is available upon request for academic use.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18453554</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1367-4811</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jul</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Bioinformatics (Oxford, England)</Title>
<ISOAbbreviation>Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>An efficient method to identify differentially expressed genes in microarray experiments.</ArticleTitle>
<Pagination>
<MedlinePgn>1583-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/bioinformatics/btn215</ELocationID>
<Abstract>
<AbstractText Label="MOTIVATION" NlmCategory="BACKGROUND">Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes.</AbstractText>
<AbstractText Label="AVAILABILITY" NlmCategory="BACKGROUND">The C++ code to implement the proposed method is available upon request for academic use.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Huaizhen</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Mathematical Sciences, Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Shuanglin</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM069940</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HG003054</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 HG003613</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Bioinformatics</MedlineTA>
<NlmUniqueID>9808944</NlmUniqueID>
<ISSNLinking>1367-4803</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015972" MajorTopicYN="Y">Gene Expression Regulation, Neoplastic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010363" MajorTopicYN="N">Pattern Recognition, Automated</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011381" MajorTopicYN="N">Programming Languages</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18453554</ArticleId>
<ArticleId IdType="pii">btn215</ArticleId>
<ArticleId IdType="doi">10.1093/bioinformatics/btn215</ArticleId>
<ArticleId IdType="pmc">PMC3607310</ArticleId>
<ArticleId IdType="mid">NIHMS439855</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 2005 Mar;61(1):10-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15737073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Nov;37(11):1224-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15904488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14429-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jan 1;23(1):38-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17077100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Opt. 1997 Oct;2(4):364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23014960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Mar;37(3):243-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15711544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Dec 12;20(18):3705-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2003 Sep;35(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 2007 Mar;63(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 26;296(5568):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11923494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Apr;18(4):546-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12016052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2004;3:Article3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Mar;37(3):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15711545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Dec 15;22(24):3025-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Dec 1;21(23):4280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Aug 12;430(7001):743-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Oct 1;22(19):2430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16870934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 15;286(5439):531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Feng, Tao" sort="Feng, Tao" uniqKey="Feng T" first="Tao" last="Feng">Tao Feng</name>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<name sortKey="Zhang, Shuanglin" sort="Zhang, Shuanglin" uniqKey="Zhang S" first="Shuanglin" last="Zhang">Shuanglin Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Qin, Huaizhen" sort="Qin, Huaizhen" uniqKey="Qin H" first="Huaizhen" last="Qin">Huaizhen Qin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003995 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003995 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18453554
   |texte=   An efficient method to identify differentially expressed genes in microarray experiments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18453554" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020